A Machine Assisted Proof of the Hahn-Banach Theorem
نویسنده
چکیده
We describe an implementation of a pointfree proof of the Alaoglu and the Hahn-Banach theorems in Type Theory. The proofs described here are formalisations of the proofs presented in \The Hahn-Banach Theorem in Type Theory" 4]. The implementation was partially developed simultaneously with 4] and it was a help in the development of the informal proofs.
منابع مشابه
A FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM
In this paper, a fuzzy version of the analytic form of Hahn-Banachextension theorem is given. As application, the Hahn-Banach theorem for$r$-fuzzy bounded linear functionals on $r$-fuzzy normedlinear spaces is obtained.
متن کاملA new proof for the Banach-Zarecki theorem: A light on integrability and continuity
To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...
متن کاملComputer-Assisted Mathematics at Work (The Hahn-Banach Theorem in Isabelle/Isar)
We present a complete formalization of the Hahn-Banach theorem in the simply-typed set-theory of Isabelle/HOL, such that both the modeling of the underlying mathematical notions and the full proofs are intelligible to human readers. This is achieved by means of the Isar environment, which provides a framework for high-level reasoning based on natural deduction. The final result is presented as ...
متن کاملHahn-Banach extension theorems for multifunctions revisited
Several generalizations of the Hahn–Banach extension theorem to K-convex multifunctions were stated recently in the literature. In this note we provide an easy direct proof for the multifunction version of the Hahn–Banach–Kantorovich theorem and show that in a quite general situation it can be obtained from existing results. Then we derive the Yang extension theorem using a similar proof as wel...
متن کامل$L^p$-existence of mild solutions of fractional differential equations in Banach space
We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work.
متن کامل